Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters

Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3914861.v1

ABSTRACT

Next-generation T-cell-directed vaccines for COVID-19 aim to induce durable T-cell immunity against circulating and future hypermutated SARS-CoV-2 variants. Mass Spectrometry (MS)-based immunopeptidomics holds promise for guiding vaccine design, but computational challenges impede the precise and unbiased identification of conserved T-cell epitopes crucial for vaccines against rapidly mutating viruses. We introduce a computational framework and analysis platform integrating a novel machine learning algorithm, immunopeptidomics, intra-host data, epitope immunogenicity, and geo-temporal CD8+ T-cell epitope conservation analyses. Central to our approach is MHCvalidator, a novel artificial neural network algorithm enhancing MS-based immunopeptidomics sensitivity by modeling antigen presentation and sequence features. MHCvalidator identified a novel nonconventional SARS-CoV-2 T-cell epitope presented by B7 supertype molecules, originating from a +1-frameshift in a truncated Spike (S) antigen, supported by ribo-seq data. Intra-host analysis of SARS-CoV-2 proteomes from ~100,000 COVID-19 patients revealed a prevalent S antigen truncation in ~51% of cases, exposing a rich source of frameshifted viral antigens. Our framework includes EpiTrack, a new computational pipeline tracking global mutational dynamics of MHCvalidator-identified SARS-CoV-2 CD8+ epitopes from vaccine BNT162b4. While most vaccine-encoded CD8+ epitopes exhibit global conservation from January 2020 to October 2023, a highly immunodominant A*01-associated epitope, especially in hospitalized patients, undergoes substantial mutations in Delta and Omicron variants. Our approach unveils unprecedented SARS-CoV-2 T-cell epitopes, elucidates novel antigenic features, and underscores mutational dynamics of vaccine-relevant epitopes. The analysis platform is applicable to any viruses, and underscores the need for continual vigilance in T-cell vaccine development against the evolving landscape of hypermutating SARS-CoV-2 variants.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512884

ABSTRACT

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOC) have been identified, many of which share recurrent mutations in the spike protein's receptor binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we show that immunosuppressed patients with hematologic cancers develop distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. Furthermore, we provide the first evidence for a viral reservoir based on intra-host phylogenetics. Our results on viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable as well as an alternative explanation for some long-COVID cases. Our findings also highlight that protracted infections should be treated with combination therapies rather than by a single mAbs to clear pre-existing resistant mutations.


Subject(s)
Neoplasms
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.01.494373

ABSTRACT

A deeper understanding of the molecular determinants that drive humoral responses to coronaviruses, and in particular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is critical for improving and developing diagnostics, therapies and vaccines. Moreover, viral mutations can change key antigens in a manner that alters the ability of the immune system to detect and clear infections. In this study, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses of asymptomatic or recovered COVID-19-positive patients relative to COVID-19- negative patients. We made use of a novel high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses to rapidly identify B cell epitopes recognized by distinct antibody isotypes in patients' blood sera. Using our integrated computational pipeline, we then evaluated the fine immunological properties of detected SARS-CoV-2 epitopes and relate them to their evolutionary and structural properties. While some epitopes are common across all CoVs, others are private to specific hCoVs. We also highlight the existence of hotspots of pre-existing immunity and identify a subset of cross-reactive epitopes that contributes to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves and SARS-CoV-2 variants, which have important implications for genomic surveillance and vaccine design. Lastly, we show that mutations in Spike and Nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.28.462270

ABSTRACT

The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajimas D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456305

ABSTRACT

We describe a new deep learning approach for the imputation of SARS-CoV-2 variants. Our model, ImputeCoVNet, consists of a 2D ResNet Autoencoder that aims at imputing missing genetic variants in SARS-CoV-2 sequences in an efficient manner. We show that ImputeCoVNet leads to accurate results at minor allele frequencies as low as 0.0001. When compared with an approach based on Hamming distance, ImputeCoVNet achieved comparable results with significantly less computation time. We also present the provision of geographical metadata (e.g., exposed country) to decoder increases the imputation accuracy. Additionally, by visualizing the embedding results of SARS-CoV-2 variants, we show that the trained encoder of ImputeCoVNet, or the embedded results from it, recapitulates viral clades information, which means it could be used for predictive tasks using virus sequence analysis.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.03.446959

ABSTRACT

The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has led to the emergence of a diverse range of variants. The initial concerns regarding the virus were quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity, pathogenicity and immunogenicity. To address the latter, we seek to understand how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic, before mass vaccination. We analyzed a total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2 diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family. In addition, we show that this predicted global loss of epitopes is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic. Together, our study lays the foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and T cell immunity across human populations. The proposed theoretical framework has implications in viral evolution, disease severity, vaccine resistance and herd immunity.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.29.21257760

ABSTRACT

The first confirmed case of COVID-19 in Quebec, Canada, occurred at Verdun Hospital on February 25, 2020. A month later, a localized outbreak was observed at this hospital. We performed tiled amplicon whole genome nanopore sequencing on nasopharyngeal swabs from all SARS-CoV-2 positive samples from 31 March to 17 April 2020 in 2 local hospitals to assess the viral diversity of the outbreak. We report 264 viral genomes from 242 individuals (both staff and patients) with associated clinical features and outcomes, as well as longitudinal samples, technical replicates and the first publicly disseminated SARS-CoV-2 genomes in Quebec. Viral lineage assessment identified multiple subclades in both hospitals, with a predominant subclade in the Verdun outbreak, indicative of hospital-acquired transmission. Dimensionality reduction identified two subclades that evaded supervised lineage assignment methods, including Pangolin, and identified certain symptoms (headache, myalgia and sore throat) that are significantly associated with favorable patient outcomes. We also address certain limitations of standard SARS-CoV-2 bioinformatics procedures, notably when presented with multiple viral haplotypes.


Subject(s)
COVID-19 , Myalgia , Headache
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-311045.v1

ABSTRACT

The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a coarse graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16-hi,CD66b-lo neutrophil and IFNγ+,GranzymeB+ Th17 cell responses enriched in patients who die. Furthermore, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.


Subject(s)
COVID-19
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3736103

ABSTRACT

The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. Here we present Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Our approach creates a tree of data granularities that can be cut at coarse levels for high level summarizations, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Our analysis identifies pathogenic cellular populations, CD16-hiCD66b-lo neutrophils and IFNγ+GranzymeB+ Th17 cells, and shows that cellular groupings discovered by Multiscale PHATE are directly predictive of disease outcome. We use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another on patient clinical features, both associating immune subsets and clinical markers with outcome.Conflict of Interest: Dr. Krishnaswamy is on the scientific advisory board of KovaDx and AI Therapeutics. Dr. Iwasaki a member of the SAB for InProTher. Dr. Iwasaki is a co-founder of RIGImmune. Dr. Wilson is founder of Efference. Dr. Ko is a member of the expert panel of the Reckit Global Hygiene Institute. The remaining authors have no competing interests to declare.Ethical Approval: This study was approved by Yale Human Research Protection Program Institutional Review Boards (FWA00002571, protocol ID 2000027690). Informed consent was obtained from all enrolled patients and healthcare workers.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.15.383661

ABSTRACT

1The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a continuous coarse graining process called diffusion condensation, Multiscale PHATE creates a tree of data granularities that can be cut at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16hi CD66blo neutrophil and IFN{gamma}+GranzymeB+ Th17 cell responses enriched in patients who die. Further, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL